1994 Geo Tracker Logo
D
DandE Posted on Feb 08, 2014

Unknown wiring between the TPS and somewhere behind the TBI and MAP sensor.

I have recently replaced the TPS sensor and forgot to mark each wire. The TPS has 4 wires that run from the sensor to a 6 pin plastic connector. There 2 additional wires, a red and a yellow, that run from the 6 pin plastic connector (which is attached to the TP sensor) to somewhere behind the TBI and MAP sensor but I cannot tell where they actually connect to. My problem is that since I replaced the TPS sensor, my Tracker has been running poorly at low RPMs/slow speed. It runs alright at higher speeds/RPMs however. There is no "check engine" light or codes. I am not sure if there is a "polarity" problem or something along those lines. None go the wiring diagrams, or exploded views of the Throttle body, say anything about these 2 other wires. My repair manual only shows the wiring diagram for the 4 wires of the TPS. The exploded view shows the 6 pin connector attached to the top of the TP sensor but, again, says nothing about it. So, I need help in identifying the wires coming from/to the 6pin plastic connector (actually comes attached to a new TPS when you buy it), what they are and where they go and what they do. Both the RED and the YELLOW wires are taped together, naturally in black tape or plastic, and routed around the TBI.

1 Answer

randy allen stotz

Level 1:

An expert who has achieved level 1.

New Friend:

An expert that has 1 follower.

Problem Solver:

An expert who has answered 5 questions.

  • Contributor 5 Answers
  • Posted on Feb 08, 2014
randy allen stotz
Contributor
Level 1:

An expert who has achieved level 1.

New Friend:

An expert that has 1 follower.

Problem Solver:

An expert who has answered 5 questions.

Joined: Feb 08, 2014
Answers
5
Questions
0
Helped
617
Points
9

Have you tryed it a diffrent way then the one they have told you ?

Testimonial: "I have no idea what you are referring to, please explain. Thanks."

  • DandE
    DandE Feb 09, 2014

    None of your "recommended solutions" pertain to the problem I have outlined to "FixYa" on this website.

×

Add Your Answer

×

Uploading: 0%

my-video-file.mp4

Complete. Click "Add" to insert your video. Add

×

Loading...
Loading...

Related Questions:

0helpful
1answer

I have a 1994 s10 2.2L tbi stalls and sputters/ when i barely give it throttle it wants to die: however if i mash it it runs fine, its a manual so when i clutch and shift then get back in it it stalls...

Since you have replaced almost all of the parts, maybe the problem is in the wires. I would check for shorting and continuity on the tps harness. The wot signal is getting thru, but there may be issues in between idle and wot. The tps signal is on the dark blue wire. Set your meter to volts DC and measure the voltage on that wire bank-probing the connector wile some turns the key on and slowly pushes the throttle down. Do you see a gradual increase or does it stay flat and then jump? Check for the reference voltage on the other terminals. Also check the same wire voltages at the computer connector. Do they match?

0996b43f80232a6b-j1axptdruxmkgupulmd503d3-4-0.gif
0helpful
1answer

I have a 2001 Dodge Durango 4.7, the check engine light is on, is throwing a P0122 throttle position sensor voltage low code, removed TPS and replaced with a new sensor, started truck and check engine...

Did you check sensor wiring circuits? Orange wire is 5 volt ref, with key on. Black wire with lite blue tracer is ground. The other orange wire has a tracer color, that is signal wire.
The tps shares ref voltage and ground with map sensor. You may need to check map sensor? I'm not saying it is faulty, I don't know?
1helpful
1answer

95 cadillac reading code current p105 sometimes engine light comes on sometimes harder to start than normal, idles up and down up on stopping

Symptoms Symptoms of a P0105 check engine light code may include:
  • Poor running engine
  • Engine runs rich
  • Engine won't idle
  • Engine backfires through tailpipe
  • Engine misfire under load or at idle
  • MIL (Malfunction Indicator Lamp) illumination
  • In some extreme cases there may be no symptoms other than MIL illumination
Causes A P0105 DTC could be caused by:
  • MAP sensor vacuum hose disconnected or plugged
  • Bad MAP Sensor
  • Bad TPS
  • Damaged or problematic MAP sensor connector
  • Damaged or problematic TPS connector
  • Damaged wiring
  • Short to reference voltage on signal circuit of MAP Sensor
  • Loss of ground to MAP sensor or TPS
  • Open on signal circuit of MAP sensor
  • Bad PCM
Possible Solutions Using a scanner or code reader, turn the ignition on and engine OFF; what does the MAP sensor voltage read? It should be about 4 Volts for sea level. If you are at a higher altitude, it should decrease about half a volt or so for each 1,000 ft. of altitude (this will vary from model to model) Or if you have a separate MAF (Mass air flow) sensor on your vehicle, they are usually equipped with a Barometric pressure reading. If so, the Baro reading should match the MAP reading (they both measure ambient air pressure). If they're roughly equal, then, check for Freeze Frame data of the MAP sensor (if available).
NOTE: Freeze Frame data is the PCM recording a fault when it happens. It captures the readings of the various PIDS (parameter identifiers)available to troubleshoot what happened. It's like a recording of the problem as it happened. At idle a typical MAP sensor Voltage reading should be about a volt, and at WOT (wide open throttle) it should approach 4.5 to 5 Volts. As for the TPS, at idle, the voltage reading is about 1 Volt or less. As the throttle is opened the reading will increase to 4.5 Volts at WOT. Do the two readings make sense? For example, if the TPS reading on Freeze Frame data shows 2.5 Volts (indicating partial throttle) does the MAP sensor indicate a reading that isn't at either extreme? Using the Freeze Frame data (if available) compare the MAP reading to the TPS when the problem occurred. This can help you identify what happened
If you have no access to Freeze Frame data then check if the MAP sensor voltage changes when you apply vacuum to it. You can do this by mouth or a vacuum pump. The voltage should increase as you apply vacuum. If the reading doesn't change as you apply vacuum, make sure there are no obstructions in the hose to the sensor. If the hose is clear, the MAP sensor is usually bad, but it doesn't rule out the following from causing the problem: Does the MAP sensor appear to be stuck at less than .5 Volts? Then:
NOTE: This code shouldn't set if the MAP is stuck at extremely low voltage, however, I'm adding it in because there's no way to know for certain for which vehicles a low voltage condition may set a P0105
  1. Inspect the wiring harness and MAP sensor connector. Repair any damage
  2. Unplug the MAP sensor connector. Also, at the PCM connector, remove the MAP sensor signal wire and check for continuity to the MAP sensor connector. If there is infinite resistance, then repair open in MAP signal circuit. If the signal wire has continuity to the MAP sensor connector, then check for 5 volt reference voltage to the connector and a good ground. If both are present, then re-install all removed wiring and replace the MAP sensor.
Does the MAP sensor appear to be stuck at full 4.5 voltage? Then:
  1. Inspect the wiring harness for damage. Repair as needed
  2. Remove the MAP sensor signal wire from the PCM connector. With a voltmeter measure the voltage with KEY ON ENGINE OFF. Is there 4.5 Volts? If so, unplug the MAP sensor and recheck. If it is still present, then repair short between the signal wire and 5 volt reference wire.
  3. If unplugging the MAP sensor causes the voltage to disappear, check that the ground is intact. If it is, then replace the MAP sensor due to internal short.
1helpful
1answer

When i punch on the gass my 97 tahoe hesitates

usually a bad MAP sensor or TPS. I would test both. Let me know if you have questions and provide test results for repair advice.

MAP Sensor TESTING
See Figures 3, 4 and 5
  1. Backprobe with a high impedance voltmeter at MAP sensor terminals A and C.
  2. With the key ON and engine off, the voltmeter reading should be approximately 5.0 volts.
  3. If the voltage is not as specified, either the wiring to the MAP sensor or the ECM may be faulty. Correct any wiring or ECM faults before continuing test.
  4. Backprobe with the high impotence voltmeter at MAP sensor terminals B and A.
  5. Verify that the sensor voltage is approximately 0.5 volts with the engine not running (at sea level).
  6. Record MAP sensor voltage with the key ON and engine off.
  7. Start the vehicle.
  8. Verify that the sensor voltage is greater than 1.5 volts (above the recorded reading) at idle.
  9. Verify that the sensor voltage increases to approximately 4.5. volts (above the recorded reading) at Wide Open Throttle (WOT).
  10. If the sensor voltage is as specified, the sensor is functioning properly.
  11. If the sensor voltage is not as specified, check the sensor and the sensor vacuum source for a leak or a restriction. If no leaks or restrictions are found, the sensor may be defective and should be replaced.



jturcotte_512.jpg

Fig. Fig. 3: Location of the MAP sensor-TBI system shown


jturcotte_513.jpg

Fig. Fig. 4: Probe the terminals of the MAP sensor to check for proper reference voltage


jturcotte_1792.gif

Fig. Fig. 5: Manifold Absolute Pressure (MAP) sensor wiring diagram








TPS TESTINGSee Figures 2, 3 and 4

  1. Backprobe with a high impedance voltmeter at TPS terminals A and B.
  2. With the key ON and engine off, the voltmeter reading should be approximately 5.0 volts.
  3. If the voltage is not as specified, either the wiring to the TPS or the ECM may be faulty. Correct any wiring or ECM faults before continuing test.
  4. Backprobe with a high impedance voltmeter at terminals C and B.
  5. With the key ON and engine off and the throttle closed, the TPS voltage should be approximately 0.5-1.2 volts.
  6. Verify that the TPS voltage increases or decreases smoothly as the throttle is opened or closed. Make sure to open and close the throttle very slowly in order to detect any abnormalities in the TPS voltage reading.
  7. If the sensor voltage is not as specified, replace the sensor.



jturcotte_514.jpg

Fig. Fig. 2: Using a DVOM, backprobe terminals A and B of the TPS sensor to check for proper reference voltage


jturcotte_515.jpg

Fig. Fig. 3: Using the DVOM, backprobe terminals C and B of the TPS sensor, open and close the throttle and make sure the voltage changes smoothly


jturcotte_1793.gif

Fig. Fig. 4: Throttle Position Sensor (TPS) wiring diagram

3helpful
1answer

Code po105 pops up i had it reset and every 3-4 days it lights back up what does it mean ?

Generic code results from http://www.obd-codes.com/p0105 :

P0105 - MAP Circuit Malfunction

Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction

The MAP (Manifold Absolute Pressure) sensor is part of the fuel management system. It reacts to changes in engine manifold pressure. The PCM (Powertrain Control Module) monitors the MAP sensor continually to properly run the engine. Changes in engine load require changes in the amount of fuel injected, and timing of the ignition system, etc. An engine under load has more manifold pressure(or less vacuum) than an engine that is coasting. As the load changes, the MAP sensor voltage signal to the PCM changes accordingly. To check the MAP sensor operation, though, the PCM watches other sensors to verify that the MAP sensor is working properly.

For example, the PCM compares the TPS (Throttle Position Sensor) signal to the MAP signal to verify the MAP signal isn't "sticking". If the PCM doesn't see a MAP sensor change immediately follow a change in the throttle pedal sensor, it knows there is a problem with the MAP sensor and sets P0105. Or, if the PCM notices that the TPS indicates the engine is under load, but the MAP signal indicates that the engine is "coasting" it, again, knows there is a problem with the MAP sensor or TPS and sets P0105.

FB.init("dd7d9e9681341cde77587bc6a2029f6f"); OBD-Codes.com on Facebook


Symptoms of a P0105 check engine light code may include:

  • Poor running engine
  • Engine runs rich
  • Engine won't idle
  • Engine backfires through tailpipe
  • Engine misfire under load or at idle
  • MIL (Malfunction Indicator Lamp) illumination
  • In some extreme cases there may be no symptoms other than MIL illumination

A P0105 DTC could be caused by:

  • MAP sensor vacuum hose disconnected or plugged
  • Bad MAP sensor
  • Bad TPS
  • Damaged or problematic MAP sensor connector
  • Damaged or problematic TPS connector
  • Damaged wiring
  • Short to reference voltage on signal circuit of MAP sensor
  • Loss of ground to MAP sensor or TPS
  • Open on signal circuit of MAP sensor
  • Bad PCM

Using a scanner or code reader, turn the ignition on and engine OFF; what does the MAP sensor voltage read? It should be about 4 Volts for sea level. If you are at a higher altitude, it should decrease about half a volt or so for each 1,000 ft. of altitude (this will vary from model to model) Or if you have a separate MAF (Mass air flow) sensor on your vehicle, they are usually equipped with a Barometric pressure reading. If so, the Baro reading should match the MAP reading (they both measure ambient air pressure). If they're roughly equal, then, check for Freeze Frame data of the MAP sensor (if available).

NOTE: Freeze Frame data is the PCM recording a fault when it happens. It captures the readings of the various PIDS (parameter identifiers)available to troubleshoot what happened. It's like a recording of the problem as it happened. At idle a typical MAP sensor Voltage reading should be about a volt, and at WOT (wide open throttle) it should approach 4.5 to 5 Volts. As for the TPS, at idle, the voltage reading is about 1 Volt or less. As the throttle is opened the reading will increase to 4.5 Volts at WOT. Do the two readings make sense? For example, if the TPS reading on Freeze Frame data shows 2.5 Volts (indicating partial throttle) does the MAP sensor indicate a reading that isn't at either extreme? Using the Freeze Frame data (if available) compare the MAP reading to the TPS when the problem occurred. This can help you identify what happened

If you have no access to Freeze Frame data then check if the MAP sensor voltage changes when you apply vacuum to it. You can do this by mouth or a vacuum pump. The voltage should increase as you apply vacuum. If the reading doesn't change as you apply vacuum, make sure there are no obstructions in the hose to the sensor. If the hose is clear, the MAP sensor is usually bad, but it doesn't rule out the following from causing the problem: Does the MAP sensor appear to be stuck at less than .5 Volts? Then:

NOTE: This code shouldn't set if the MAP is stuck at extremely low voltage, however, I'm adding it in because there's no way to know for certain for which vehicles a low voltage condition may set a P0105.

  1. Inspect the wiring harness and MAP sensor connector. Repair any damage
  2. Unplug the MAP sensor connector. Also, at the PCM connector, remove the MAP sensor signal wire and check for continuity to the MAP sensor connector. If there is infinite resistance, then repair open in MAP signal circuit. If the signal wire has continuity to the MAP sensor connector, then check for 5 volt reference voltage to the connector and a good ground. If both are present, then re-install all removed wiring and replace the MAP sensor.

Does the MAP sensor appear to be stuck at full 4.5 voltage? Then:

  1. Inspect the wiring harness for damage. Repair as needed
  2. Remove the MAP sensor signal wire from the PCM connector. With a voltmeter measure the voltage with KEY ON ENGINE OFF. Is there 4.5 Volts? If so, unplug the MAP sensor and recheck. If it is still present, then repair short between the signal wire and 5 volt reference wire.
  3. If unplugging the MAP sensor causes the voltage to disappear, check that the ground is intact. If it is, then replace the MAP sensor due to internal short.
1helpful
1answer

I have this eobd code problem p0105 in my elantra, where those sensors?

P0105 - Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction
The MAP (Manifold Absolute Pressure) sensor is part of the fuel management system. It reacts to changes in engine manifold pressure. The PCM (Powertrain Control Module) monitors the MAP sensor continually to properly run the engine. Changes in engine load require changes in the amount of fuel injected, and timing of the ignition system, etc. An engine under load has more manifold pressure(or less vacuum) than an engine that is coasting. As the load changes, the MAP sensor voltage signal to the PCM changes accordingly. To check the MAP sensor operation, though, the PCM watches other sensors to verify that the MAP sensor is working properly.

For example, the PCM compares the TPS (Throttle Position Sensor) signal to the MAP signal to verify the MAP signal isn't "sticking". If the PCM doesn't see a MAP sensor change immediately follow a change in the throttle pedal sensor, it knows there is a problem with the MAP sensor and sets P0105. Or, if the PCM notices that the TPS indicates the engine is under load, but the MAP signal indicates that the engine is "coasting" it, again, knows there is a problem with the MAP sensor or TPS and sets P0105.

Symptoms of a P0105 check engine light code may include:
* Poor running engine
* Engine runs rich
* Engine won't idle
* Engine backfires through tailpipe
* Engine misfire under load or at idle
* MIL (Malfunction Indicator Lamp) illumination
* In some extreme cases there may be no symptoms other than MIL illumination

Causes: A P0105 DTC could be caused by:
* MAP sensor vacuum hose disconnected or plugged
* Bad MAP sensor
* Bad TPS
* Damaged or problematic MAP sensor connector
* Damaged or problematic TPS connector
* Damaged wiring
* Short to reference voltage on signal circuit of MAP sensor
* Loss of ground to MAP sensor or TPS
* Open on signal circuit of MAP sensor
* Bad PCM

Possible Solutions:
Using a scanner or code reader, turn the ignition on and engine OFF; what does the MAP sensor voltage read? It should be about 4 Volts for sea level. If you are at a higher altitude, it should decrease about half a volt or so for each 1,000 ft. of altitude (this will vary from model to model) Or if you have a separate MAF (Mass air flow) sensor on your vehicle, they are usually equipped with a Barometric pressure reading. If so, the Baro reading should match the MAP reading (they both measure ambient air pressure). If they're roughly equal, then, check for Freeze Frame data of the MAP sensor (if available).

NOTE: Freeze Frame data is the PCM recording a fault when it happens. It captures the readings of the various PIDS (parameter identifiers)available to troubleshoot what happened. It's like a recording of the problem as it happened. At idle a typical MAP sensor Voltage reading should be about a volt, and at WOT (wide open throttle) it should approach 4.5 to 5 Volts. As for the TPS, at idle, the voltage reading is about 1 Volt or less. As the throttle is opened the reading will increase to 4.5 Volts at WOT. Do the two readings make sense? For example, if the TPS reading on Freeze Frame data shows 2.5 Volts (indicating partial throttle) does the MAP sensor indicate a reading that isn't at either extreme? Using the Freeze Frame data (if available) compare the MAP reading to the TPS when the problem occurred. This can help you identify what happened

If you have no access to Freeze Frame data then check if the MAP sensor voltage changes when you apply vacuum to it. You can do this by mouth or a vacuum pump. The voltage should increase as you apply vacuum. If the reading doesn't change as you apply vacuum, make sure there are no obstructions in the hose to the sensor. If the hose is clear, the MAP sensor is usually bad, but it doesn't rule out the following from causing the problem: Does the MAP sensor appear to be stuck at less than .5 Volts? Then:

NOTE: This code shouldn't set if the MAP is stuck at extremely low voltage, however, I'm adding it in because there's no way to know for certain for which vehicles a low voltage condition may set a P0105.

1. Inspect the wiring harness and MAP sensor connector. Repair any damage
2. Unplug the MAP sensor connector. Also, at the PCM connector, remove the MAP sensor signal wire and check for continuity to the MAP sensor connector. If there is infinite resistance, then repair open in MAP signal circuit. If the signal wire has continuity to the MAP sensor connector, then check for 5 volt reference voltage to the connector and a good ground. If both are present, then re-install all removed wiring and replace the MAP sensor.

Does the MAP sensor appear to be stuck at full 4.5 voltage? Then:
1. Inspect the wiring harness for damage. Repair as needed
2. Remove the MAP sensor signal wire from the PCM connector. With a voltmeter measure the voltage with KEY ON ENGINE OFF. Is there 4.5 Volts? If so, unplug the MAP sensor and recheck. If it is still present, then repair short between the signal wire and 5 volt reference wire.
3. If unplugging the MAP sensor causes the voltage to disappear, check that the ground is intact. If it is, then replace the MAP sensor due to internal short.

MAP sensor codes include P0106, P0107, P0108 and P0109 .


LOCATIONS:
Manifold Absolute Pressure (MAP) Sensor: The MAP sensor is located against the firewall to the left side of the engine.
Barometric Pressure Sensor: This sensor is installed on the VAF sensor; Volume Air Flow Sensor Is located in the air intake plenum assembly.

Hope this helps.
4helpful
1answer

I have a p0105 error. They say this is a dirty body throttle. How can I clean this myself? My car is a 2002 Chevy Envoy.

DTC P0105 - Crankshaft Position Sensor B Circuit Malfunction or Manifold Absolute Pressure/Barometric Pressure Circuit Malfunction


What does that mean?
The MAP (Manifold Absolute Pressure) sensor is part of the fuel management system. It reacts to changes in engine manifold pressure. The PCM (Powertrain Control Module) monitors the MAP sensor continually to properly run the engine. Changes in engine load require changes in the amount of fuel injected, and timing of the ignition system, etc. An engine under load has more manifold pressure(or less vacuum) than an engine that is coasting. As the load changes, the MAP sensor voltage signal to the PCM changes accordingly. To check the MAP sensor operation, though, the PCM watches other sensors to verify that the MAP sensor is working properly.

For example, the PCM compares the TPS (Throttle Position Sensor) signal to the MAP signal to verify the MAP signal isn't "sticking". If the PCM doesn't see a MAP sensor change immediately follow a change in the throttle pedal sensor, it knows there is a problem with the MAP sensor and sets P0105. Or, if the PCM notices that the TPS indicates the engine is under load, but the MAP signal indicates that the engine is "coasting" it, again, knows there is a problem with the MAP sensor or TPS and sets P0105.

Symptoms: Symptoms of a P0105 check engine light code may include:
* Poor running engine
* Engine runs rich
* Engine won't idle
* Engine backfires through tailpipe
* Engine misfire under load or at idle
* MIL (Malfunction Indicator Lamp) illumination
* In some extreme cases there may be no symptoms other than MIL illumination

Causes: A P0105 DTC could be caused by:
* MAP sensor vacuum hose disconnected or plugged
* Bad MAP sensor
* Bad TPS
* Damaged or problematic MAP sensor connector
* Damaged or problematic TPS connector
* Damaged wiring
* Short to reference voltage on signal circuit of MAP sensor
* Loss of ground to MAP sensor or TPS
* Open on signal circuit of MAP sensor
* Bad PCM

Possible Solutions: Using a scanner or code reader, turn the ignition on and engine OFF; what does the MAP sensor voltage read? It should be about 4 Volts for sea level. If you are at a higher altitude, it should decrease about half a volt or so for each 1,000 ft. of altitude (this will vary from model to model) Or if you have a separate MAF (Mass air flow) sensor on your vehicle, they are usually equipped with a Barometric pressure reading. If so, the Baro reading should match the MAP reading (they both measure ambient air pressure). If they're roughly equal, then, check for Freeze Frame data of the MAP sensor (if available).

NOTE: Freeze Frame data is the PCM recording a fault when it happens. It captures the readings of the various PIDS (parameter identifiers)available to troubleshoot what happened. It's like a recording of the problem as it happened. At idle a typical MAP sensor Voltage reading should be about a volt, and at WOT (wide open throttle) it should approach 4.5 to 5 Volts. As for the TPS, at idle, the voltage reading is about 1 Volt or less. As the throttle is opened the reading will increase to 4.5 Volts at WOT. Do the two readings make sense? For example, if the TPS reading on Freeze Frame data shows 2.5 Volts (indicating partial throttle) does the MAP sensor indicate a reading that isn't at either extreme? Using the Freeze Frame data (if available) compare the MAP reading to the TPS when the problem occurred. This can help you identify what happened

If you have no access to Freeze Frame data then check if the MAP sensor voltage changes when you apply vacuum to it. You can do this by mouth or a vacuum pump. The voltage should increase as you apply vacuum. If the reading doesn't change as you apply vacuum, make sure there are no obstructions in the hose to the sensor. If the hose is clear, the MAP sensor is usually bad, but it doesn't rule out the following from causing the problem: Does the MAP sensor appear to be stuck at less than .5 Volts? Then:

NOTE: This code shouldn't set if the MAP is stuck at extremely low voltage, however, I'm adding it in because there's no way to know for certain for which vehicles a low voltage condition may set a P0105.

1. Inspect the wiring harness and MAP sensor connector. Repair any damage
2. Unplug the MAP sensor connector. Also, at the PCM connector, remove the MAP sensor signal wire and check for continuity to the MAP sensor connector. If there is infinite resistance, then repair open in MAP signal circuit. If the signal wire has continuity to the MAP sensor connector, then check for 5 volt reference voltage to the connector and a good ground. If both are present, then re-install all removed wiring and replace the MAP sensor.

Does the MAP sensor appear to be stuck at full 4.5 voltage? Then:

1. Inspect the wiring harness for damage. Repair as needed
2. Remove the MAP sensor signal wire from the PCM connector. With a voltmeter measure the voltage with KEY ON ENGINE OFF. Is there 4.5 Volts? If so, unplug the MAP sensor and recheck. If it is still present, then repair short between the signal wire and 5 volt reference wire.
3. If unplugging the MAP sensor causes the voltage to disappear, check that the ground is intact. If it is, then replace the MAP sensor due to internal short.

MAP sensor codes include P0105, P0106, P0107, P0108 and P0109 .


Hope helps (remember rated this).
0helpful
1answer

Problem code 22, runs like ****

YOU NEED TO PULL THE CONNECTOR OFF THE ECM AND RUN A CONTINUITY TEST OF THE WIRES FROM THE TPS CONNECTOR TO THE ECM, THIS SOUNDS LIKE A POSSIABLE WIRING PROBLEM TO THE TPS
Not finding what you are looking for?

169 views

Ask a Question

Usually answered in minutes!

Top Geo Experts

ZJ Limited
ZJ Limited

Level 3 Expert

17989 Answers

Thomas Perkins
Thomas Perkins

Level 3 Expert

15088 Answers

Brad Brown

Level 3 Expert

19187 Answers

Are you a Geo Expert? Answer questions, earn points and help others

Answer questions

Manuals & User Guides

Loading...